Antiferromagnetic Potts models on the square lattice.

نویسندگان

  • Ferreira
  • Sokal
چکیده

We study the antiferromagnetic q-state Potts model on the square lattice for q = 3 and q = 4, using the Wang-Swendsen-Koteck y Monte Carlo algorithm and a new nite-size-scaling extrapolation method. For q = 3 we obtain good control up to correlation length 5000; the data are consistent with () = Ae 2 (1 + a 1 e +. . .) as ! 1. For q = 4 the model is disordered even at zero temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absence of Phase Transition for Antiferromagnetic Potts Models via the Dobrushin Uniqueness Theorem

We prove that the q-state Potts antiferromagnet on a lattice of maximum coordination number r exhibits exponential decay of correlations uniformly at all temperatures (including zero temperature) whenever q > 2r. We also prove slightly better bounds for several two-dimensional lattices: square lattice (exponential decay for q ≥ 7), triangular lattice (q ≥ 11), hexagonal lattice (q ≥ 4), and Kag...

متن کامل

Antiferromagnetic Potts Models on the Square Lattice: A High-Precision Monte Carlo Study

We study the antiferromagnetic q-state Potts model on the square lattice for q = 3 and q = 4, using the Wang-Swendsen-Kotecký (WSK) Monte Carlo algorithm and a powerful finite-size-scaling extrapolation method. For q = 3 we obtain good control up to correlation length ξ ∼ 5000; the data are consistent with ξ(β) = Ae2ββp(1 + a1e −β + . . .) as β → ∞, with p ≈ 1. The staggered susceptibility beha...

متن کامل

Se p 20 01 Transfer Matrices and Partition - Function Zeros for Antiferromagnetic Potts Models

We study the chromatic polynomials for m × n square-lattice strips, of width 9 ≤ m ≤ 13 (with periodic boundary conditions) and arbitrary length n (with free boundary conditions). We have used a transfer matrix approach that allowed us also to extract the limiting curves when n → ∞. In this limit we have also obtained the isolated limiting points for these square-lattice strips and checked some...

متن کامل

The ferro / antiferromagnetic q - state Potts model

The critical properties of the mixed ferro/antiferromagnetic q-state Potts model on the square lattice are investigated using the numerical transfer matrix technique. The transition temperature is found to be substantially lower than previously found for q = 3. It is conjectured that there is no transition for q > 3, in contradiction with previous results.

متن کامل

0 Transfer Matrices and Partition - Function Zeros for Antiferromagnetic Potts Models II . Extended results for square - lattice chromatic polynomial

We study the chromatic polynomials for m × n square-lattice strips, of width 9 ≤ m ≤ 13 (with periodic boundary conditions) and arbitrary length n (with free boundary conditions). We have used a transfer matrix approach that allowed us also to extract the limiting curves when n → ∞. In this limit we have also obtained the isolated limiting points for these square-lattice strips and checked some...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. B, Condensed matter

دوره 51 10  شماره 

صفحات  -

تاریخ انتشار 1995